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1. Abstract

Reservoir characterization and, in general, site characterization in any spatial setting requires
consideration of multiple correlated variables. There are often 10 or more correlated variables to be
mapped. Some variables are geological trends or remotely sensed variables that are used to constrain
the primary variables of direct interest. Trend maps and prior maps are used to understand each
variable independently. Correlation matrices and likelihood maps are used to understand the
correlation between variables and to show the predictive information contained in secondary structural
data. The Bayesian updating approach is used to integrate the information from prior and secondary
maps; the result is a local model of uncertainty for each variable.

Joint uncertainty between multiple variables and multiple locations is not directly calculated from
such local uncertainty. For example, the calculation of recoverable reserves is a function of net pay
thickness, porosity and oil saturation. Simulation methods are necessary to add the multivariate and
spatial correlations into joint uncertainty. The LU method is ideally suited to multivariate uncertainty
characterization between multiple variables at the same location. The P-field method is ideally suited
for sampling joint uncertainty between multiple locations. These techniques are combined for
assessing joint uncertainty in a practical setting. The theoretical framework will be developed and
practical examples shown in the presentation. The combined Bayesian Updating/LU/P-field approach
is remarkably simple to implement because of assumptions that permit the decomposition of different
data sources and the decomposition of multivariate and spatial correlation.

2. Introduction

Conventional geostatistical techniques have been designed to create models of heterogeneity and
uncertainty in static rock properties. This is appropriate for input to process evaluation. There are
times, however, when the goal is uncertainty assessment and detailed realizations are not necessarily
required. Moreover, there are times when we have many different variables: measured variables,
large-scale remotely sensed variables, interpreted trend-like variables, and other response variables.
These data often cover different areas, provide data at different scales, and are variably correlated
together. Statistical techniques like principal components, factor analysis, ACE, and cluster analysis
could be used to summarize the relationships between the variables, but they do not account for spatial
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correlation. Conventional geostatistical techniques incorporate the spatial structure but these
techniques are cumbersome in the presence of many secondary variables. We propose that all
secondary data be merged statistically by a multivariate Gaussian approach into a single variable that
contains all of the secondary variable information; this provides a likelihood distribution. The spatial
distribution of each variable by itself is mapped independently of the secondary variable information;
this provides a prior distribution. The likelihoods and priors are merged to provide updated posterior
distributions. Further processing is needed to calculate joint uncertainty from the local uncertainty in
each variable

The LU and p-field simulation methods are combined to assess joint uncertainty between multiple
variables and multiple locations. The former was used primarily for simulation of multiple variables,
while the latter was used for the spatial component of simulation.

3. Context for Methodology

There are a number of geostatistical techniques designed to work with multiple variables. These
techniques account for the spatial relationships between the variables and provide a measure of
uncertainty at every estimated location. The main technique is cokriging that can be applied in a
multivariate  Gaussian  or  an  indicator  framework.  There  are  simplifying  assumptions  such  as
collocated cokriging and the Markov-Bayes approach. A concern with all these techniques is the
inference of the direct and cross variogram measures of correlation, which requires a large number of
data. For K variables, they require a total of (K+1)K/2 variogram models, which is difficult in practice.
Automatic fitting algorithms have helped; however, the problem of inference remains when we have
K=10 or more variables with relatively few data.

Collocated cokriging, in the Gaussian or Bayesian form, simplifies the process to consider only the
collocated secondary variables. This also removes the need to model the large number of variograms
mentioned above. There are implementation problems associated with this simplification such as
variance inflation, but the method has proved very practical. These geostatistical methods for
considering multiple variables really only consider 1 to 3 secondary variables; there is no simple way
to consider 10 to 30 secondary variables simultaneously. We must tailor the multivariate statistical and
geostatistical tools to the problem of a large number of variables and relatively few data.

The  proposed  methodology is  Gaussian,  that  is,  all  data  variables  must  be  transformed to  univariate
Gaussian distributions prior to analysis and results must be back transformed. A parametric
distribution model for each variable or a non-parametric normal-scores transformation could be used.
Care should be taken to decluster/debias the original data histograms. The variables are assumed to be
multivariate Gaussian after univariate transformation of each variable. There are some clear
indications of non-Gaussian behavior: non-linear relationships, proportional effect (dependency of the
variance  on  the  mean),  constraints  due  to  mineralogical  constraints,  or  a  constant  sum constraint.  A
special  transformation  may  need  to  be  considered  for  these  non-Gaussian  cases.  Log-ratios  and  the
stepwise conditional transformation are two alternatives.



Joint Uncertainty Assessment with a Combined Bayesian Updating/LU/P-Field Approach         641

There are two key ideas of the proposed methodology (1) prediction of the conditional distribution of
uncertainty in all variables at all locations using a Bayesian updating formalism, and (2) assessment of
joint uncertainty with a combined LU/p-field approach.

4. Bayesian Updating

It is common to have two types of data variables. Primary data  variables  are  to  be  predicted  with
uncertainty and are available at relatively few locations. Consider NP (yP,i, i=1,…,NP) primary
variables. Secondary data variables are not to be predicted and are often available more extensively.
Examples of secondary variables include geophysical measurements and geologic trend maps.
Consider NS secondary data variables (yS,i, i=1,…,NS). The location is often denoted as uα where α is
the data index.

All secondary variables are merged into a single likelihood distribution for each primary variable at
each location. Of course, the number of secondary variables available at each location could vary; the
notation Ns(u) denotes the number of secondary data available at location u. The mean and variance of
the likelihood distribution are calculated as:
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These equations are the well understood normal equations or simple kriging equations. The last row
shows how to calculate the weights νi,p(u). Correlation coefficients between all pairs of secondary data
and all secondary and primary data are required. The likelihood distributions are summarized by a set
of mean and variance values for all locations and primary variables:

( ) ( )2
, ,, ; 1,...., ,L p L p Py p N Aσ = ∀ ∈u u u                                 (2)

These distributions are a “collapsed” version of all available secondary variables at location u. The
final likelihood distributions account for the relationships between the secondary variables and will be
used to help inform the primary estimate. Spatial information is not accounted for; these values
summarize all of the information available in the secondary data related to the primary variables of
interest. The spatial information comes in through the prior distributions.

The distribution of uncertainty in each primary variable is predicted from surrounding data (in a
spatial sense) using simple kriging. These estimates are called prior distributions and are denoted with
a P; the context will clarify the distinction between prior and primary variable. Similar to the
likelihood distribution, the parameters of the prior distribution are obtained as:



642                                       Clayton.  V.  Deutsch,  Weishan  Ren  and  Oy  Leuangthong

( ) ( )

( )

( )

, ,
1

( )
2

, , , ,
1

( )

, , , , ,
1

( )

1 ( ) 1,...., ,

( ) , 1,..., ( )

p

p

i

p

i j i

N

P p i p P i
i

N

P p i p p P
i

N

i p p p p
j

y y

p N A

i N

λ

σ λ ρ

λ ρ ρ

=

=

=


= 


= − = ∀ ∈


= =


∑

∑

∑

u

u

u u

u

u u u u

u u u

u u u

u u

g

g

g

             (3)

The  correlation  coefficients  between  all  primary  data  at  different  locations  come  directly  from  a
semivariogram or correlogram model. The prior distributions are summarized by a set of mean and
variance values for all locations and primary variables:

( ) ( )2
, ,, ; 1,...., ,P p P p Py p N Aσ = ∀ ∈u u u                                 (4)

These distributions summarize the spatial information of surrounding data of the same variable type.
The likelihood and prior distributions are then combined to get the final updated distribution. Since
the two input distributions are Gaussian in shape, the resulting updated distribution will also be
Gaussian. The updated distribution is defined by the updated mean and variance:
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The updated distributions defined above must be back-transformed to return the primary variables to
their original distributions. The proposed technique is summarized as Bayesian Updating under a
Multivariate Gaussian  model  -  or  a BMG model  for  lack  of  a  better  acronym.  The  elements  of  this
technique are not new; however, this is a novel way of putting everything together for reliable and
simple estimation. A Markov screening assumption is made whereby collocated secondary data screen
the influence of nearby secondary data. There is a further assumption that primary data of different
types at different locations are also screened. The consequences of these assumptions are not
considered severe in most cases. Full cokriging could be implemented to judge their importance.

The percentiles, or arbitrary number of quantiles, could be back transformed from the local
distributions  (Eq.  5).  Any  summary  statistics  of  the  local  distributions  could  then  be  calculated
including the expected value, the local variance, P10, P50 and P90 values and so on. These summaries
could be used to appreciate local uncertainty and to assist with well placement and data collection
decisions. Local uncertainty in each of the Np variables at each location A∀ ∈u  does not permit
multivariate calculations or uncertainty over larger volumes. A simulation approach is required for
those calculations.

5. Joint Uncertainty with LU/P-Field Simulation

We are often interested in derived variables such as economic value or net calculations. Multiple
variables must be combined together. The distributions of uncertainty in the input variables can
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sometimes be combined analytically, but only when the calculations are simple. In general, a
simulation approach is required. Multiple realizations are drawn, each realization is processed to
establish the derived variables and distributions of uncertainty in the derived variables are assembled.

The NP variables are correlated with a known structure; the NP by NP covariance or correlation matrix C is
known from the data. This matrix of covariance values is not used in the Bayesian Updating since we only
need the correlation between the secondary and the primary; however, the goal at this time is to draw primary
values with the correct correlation structure. NP Gaussian values can be drawn from the covariance matrix
very simply with the LU simulation approach: (1) the C matrix is decomposed into lower and upper matrices
L and U using Cholesky decomposition, (2) vectors of NP random Gaussian values are created by a random
number generator (the random vector is commonly denoted w),  and  (3)  correlated  Gaussian  values  are
calculated as y=Lw. The y vectors of correlated values have the correct covariance structure, but they do not
respect  the  updated  local  distributions  of  uncertainty,  that  is,  they  do  not  follow

( ) ( )2
, ,, ; 1,...., ,U p U p Py p N Aσ = ∀ ∈u u u .  A post processing correction is applied:

( ) ( ) ( ) ( ), , , ; 1,...., ,c p p U p U p Py y y p N Aσ= + = ∀ ∈u u u u ug                   (6)

where the yp(u) values are the result of LU simulation. The ycp(u) values are conditional to the updated
distributions  of  uncertainty.  This  procedure  can  be  seen  as  a  Gaussian  based  P-field  approach  where  LU
simulation is used for the probabilities. There are minor concerns related to the non-stationarity of the
resulting conditional covariance structure and hard data appearing as local minima and maxima.

The LU simulation approach works very well for multiple correlated variables – the 10 to 30 primary
data variables we encounter in practice; however, we are often interested in joint spatial uncertainty
over a large area or volume. The covariance matrix size becomes intractably large when the number of
variables is greater than, say, 5000. Three techniques have evolved for large problems: (1) turning
bands, (2) sequential simulation, and (3) P-field simulation. There is extensive literature available on
each technique. We adopt P-field simulation for sampling large scale uncertainty. There are some
minor concerns, as previously mentioned, but there is one very significant advantage. The global
uncertainty  calculated  from P-field  simulation  is  perfectly  consistent  with  the  local  uncertainty  –  all
data sources and spatial features contained in the local uncertainty predictions are reproduced exactly.

The P-field procedure amounts to simultaneously sampling many local distributions of uncertainty
with correlated probabilities. In a Gaussian context a standard Gaussian value takes the place of a
probability value since they are related through p=G(y) and y=G-1(p).  Thus,  application  to  a  large
multivariate problem proceeds as follows:

1. Generate a probability field for each variable ( ( ) ; 1,...., ,p field
p Py p N A− = ∀ ∈u u ) using a Gaussian

simulation technique (we used sequential Gaussian simulation). The variogram for each
probability field is the normal scores variogram. There is some discussion on using the rank-order
variogram; however, the normal scores of the rank transform is equivalent to the normal scores of
the original variable.
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2. Apply the LU algorithm to ( )p field
py − u  at each location to ensure that the multivariate structure is

reasonable, that is, multiply ( ) ( )LU p field
p p

−=y u Ly u . The “LU” values at each location have the right

spatial correlation structure (from step 1) and the right multivariate structure (from the product

with L).
3. Condition the P-field/LU results to the local data by the procedure given in Eq. 6:

( ) ( ) ( ) ( ), , , ; 1,...., ,LU
c p p U p U p Py y y p N Aσ= + = ∀ ∈u u u u ug

The final result is exactly what we need, that is, a realization of all variables with the right
multivariate structure and the right spatial structure.

Multiple realizations are generated by repeating steps 1-3 with a different random number seed. The
results of Eq. 6 are not needed if we proceed with the full procedure described in steps 1-3; however,
we often need local uncertainty in derived variables without recourse to global uncertainty.

6. Discussions and Conclusions

Prediction of uncertainty with multiple primary and secondary variables is an important new area of
geostatistics. Bayesian updating under a multivariate Gaussian model provides a simple and robust
solution to this inference problem. LU and P-field simulation permit calculation of complex derived
variables and uncertainty over large areas. There are, of course, limitations and assumptions such as
representative data, statistical homogeneity and multivariate Gaussianity. The procedure advocated in
this paper may appear like a hodge-podge of techniques.  Each constituent technique is required for a
specific purpose of data integration or accounting for multivariate or spatial structure. Simpler
techniques would necessarily leave out some aspect of data structure.
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